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Abstract 

Background: Developmental periods in early life may be particularly vulnerable to impacts 

of environmental exposures. Human research on this topic has generally focused on single 

exposure-health effect relationships. The “exposome” concept encompasses the totality of 

exposures from conception onwards, complementing the genome. 

Objectives: The Human Early-Life Exposome (HELIX) project is a new collaborative 

research project that aims to implement novel exposure assessment and biomarker methods to 

characterise early-life exposure to multiple environmental factors and associate these with 

omics biomarkers and child health outcomes, thus characterizing the “Early-Life Exposome”. 

Here we describe the general design of the project. 

Methods: In six existing birth cohort studies in Europe, HELIX will estimate prenatal and 

postnatal exposure to a broad range of chemical and physical exposures. Exposure models 

will be developed for the full cohorts totalling 32,000 mother-child pairs and biomarkers will 

be measured in a subset of 1,200. Nested repeat-sampling panel studies (N = 150) will collect 

data on biomarker variability, use smartphones to assess mobility and physical activity, and 

perform personal exposure monitoring. Omics techniques will determine molecular profiles 

(metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical 

methods for multiple exposures will provide exposure-response estimates for fetal and child 

growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment 

exercise will evaluate risks and benefits of combined exposures. 

Conclusions: HELIX is one of the first attempts to describe the early-life exposome of 

European populations and unravel its relation to omics markers and health in childhood. As 

proof of concept, it will form an important first step towards the life-course exposome. 
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Introduction  

Environmental  hazards  such as  ambient  air pollution, environmental  tobacco smoke, noise, 

pesticides  and radiations  may lead to serious, chronic  pathologies. The  foetus  and infant  are  

particularly vulnerable  to such potential  hazards  (Barouki  et  al. 2012;  Gluckman and Hanson 

2004; Hines  et  al. 2010). Environmental  exposures, preconceptionally,  in utero  and during 

early life  may permanently change  the  body’s  structure, physiology, and metabolism  

(Gluckman and Hanson 2004). Such changes  can promote  disease  long after the  

environmental  exposure  has  occurred, including across  generations.  Environmental  exposures  

during foetal  or early life  have  been associated with adverse  foetal  growth and with 

developmental  neurotoxic, immunotoxic  and obesogenic  effects  in children, but  for many of  

these  associations  evidence  has  been classified as  limited or inadequate  (e.g. Bellinger 2013;  

Gascon et  al. 2013a;  La  Merrill  and Birnbaum  2011;  Wigle  et  al. 2008).  Neurodevelopmental  

disabilities, obesity and asthma  are  common and highly complex chronic  pathologies  and it is 

hypothesised that  improved understanding of  how  simultaneous  environmental  risk factors  

interact  between themselves, with individual  characteristics  (e.g. genetics),  and with 

epigenetics, can help  elucidate  their  causes  (Bousquet  et  al. 2011;  Gallagher et  al. 2011;  

Trasande  et  al. 2009;  Van den Bergh 2011). Up to now, the  field of  environment  and child 

health  has  almost  uniquely focused on single  exposure-health effect  relationships;  there  is  no 

global view of how various types of exposures co-exist and jointly impact on health .   

The ex posome  

The  “exposome”  concept  was  first  proposed by Wild (2005)  to encompass  the  totality of  

human environmental  (i.e. non-genetic) exposures  from  conception onwards, complementing 

the  genome;  it  was  developed “to draw  attention to the  critical  need for more  complete  

environmental  exposure  data  in epidemiological  studies”  (Wild 2012). In this  concept, the  

exposome  contains  several  overlapping domains  of  non-genetic  factors  contributing to 
4
 



 

  
  

 

     

     

    

        

       

      

        

        

       

        

       

        

       

        

 

          

    

     

         

       

  

        

       

           

     

disease risk, including a general external domain (social, societal, urban environment, climate 

factors), a specific external domain (specific contaminants, lifestyle factors, tobacco, 

occupation), and an internal environment (metabolism, gut microflora, inflammation, 

oxidative stress) (Wild 2012). The exposome calls for improvement of often uncertain 

exposure data, for integration of data on biological mechanisms, and for a more holistic 

exposure approach in epidemiological studies. Furthermore, it has been proposed that the 

exposome may serve an important purpose in characterising not only the complex mixtures of 

already identified exposures, but in addition, through its untargeted approach and the use of 

high-throughput “omics” techniques, relevant exposures that have thus far remained 

unidentified (Rappaport 2011; Rappaport and Smith 2010). There are large challenges in 

developing the exposome concept into a workable approach, including the consideration of 

multiple, longitudinal time periods of interest and of temporal variability, the 

acknowledgement of exposure uncertainty in an exposome study, the integration of omics 

data, and the development of powerful statistical techniques to analyse the associations 

between exposome data and adverse health end points. 

The HELIX (Human Early-Life Exposome) project has as its general aim to implement tools 

and methods (biomarkers, omics-based approaches, remote sensing and GIS-based spatial 

methods, personal exposure devices, statistical tools for combined exposures, and burden of 

disease methodologies), to characterise early-life exposure to a wide range of chemical and 

physical environmental factors and associate these with data on major child health outcomes 

(growth and obesity, neurodevelopment, respiratory health), thus developing an “Early-Life 

Exposome” approach. The project takes pregnancy and childhood periods (“early life”) as the 

starting point for developing the life-course exposome. This paper describes the general 

design of HELIX and its main challenges. In this manner, we aim to illustrate how the 

exposome concept may be implemented in a feasible epidemiological study design. 
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Project  Concept,  Objectives  and Study Populations  

HELIX  will  develop the  early-life  exposome  approach and database  in three  overlapping 

steps  containing six research areas  (Figure  1).  A  first  step will  measure  the  external  

exposome  - exposure  estimates  for a  broad range  of  chemical  and physical  exposures, a  

second step will  measure  the  internal  exposome  (molecular signatures) and integrate  the  

multiple  dimensions  of  the  exposome  - multiple  exposures, multiple  time  points, individual  

variability -, and a  third step will  develop the  tools  and methods  to evaluate  the  exposome’s  

impact  on child health  (Figure  1). The  project  is  based in six existing population-based birth 

cohort studies  in  Europe (Figure 2). Objectives are:   

Step 1: Measuring the external exposome   

-­‐ To obtain estimates  of  exposure  to persistent  and non-persistent  pollutants  in food, 

consumer products, water and indoor air, during pregnancy and in childhood.   

-­‐ To obtain estimates  of  chemical  and physical  exposures  in the  outdoor environment  

during pregnancy and in childhood:  ambient  air pollution, ambient  noise, ultraviolet  

(UV) radiation, temperature, and built environment/green space.    

Step 2: Integrating the external and internal exposome:  

-­‐ To define  multiple  exposure  patterns  in the  individual  and outdoor environment, describe  

their predictors, and describe uncertainties and variability in the exposures assessed. .      

-­‐ To measure  molecular signatures  associated with environmental  exposures  through 

analysis  of  profiles  of  metabolites, proteins, transcripts, and DNA  methylation in 

biological  samples  from  the  children in the  cohorts. Biological  pathway  analyses  will  be  

used to inform analyses of the relationship between multiple exposures and child health.  
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Step 3: Impact of the early-life exposome on child health  

-­‐ To develop a novel  multi-step statistical  approach for the  analysis  of  the  association of  

patterns  of  multiple  and combined exposures  and child health outcomes, using agnostic  

environment-wide  association study (EWAS)  analysis, structural  equation modelling  

(SEM), and Bayesian profile regression.  

-­‐ To provide  exposure-response  estimates  for the  association between multiple  and 

combined exposures, and child health  focusing on foetal  and childhood growth and 

obesity, neurodevelopment, and respiratory health.  

-­‐ To estimate  the  burden of  common childhood diseases  that  may be  attributed to multiple  

environmental exposures in Europe.  

-­‐ To strengthen the  knowledge  base  for European policy in the  area  of  child and 

environmental  health by engaging with, and effectively disseminating HELIX  

knowledge  to, stakeholders  including those  responsible  for risk management  and 

mitigation and prevention strategies.   

The birth cohorts 

Six existing longitudinal population-based birth cohort studies in Europe form the basis of the 

project: BiB (UK) (Wright et al. 2012), EDEN (France) (Drouillet et al. 2009), INMA (Spain) 

(Guxens et al. 2012), KANC (Lithuania) (Grazuleviciene et al. 2009), MoBa (Norway) 

(Magnus et al. 2006), and RHEA (Greece) (Chatzi et al. 2009) (Figure 2). The cohorts were 

selected because a) they each have a large amount of existing longitudinal data from early 

pregnancy through childhood, b) they can implement new follow-up examinations of the 

children at similar ages (6-9 yrs), old enough for accurate measurement of the phenotypes of 

interest for HELIX, and c) they can integrate new questionnaires, biosampling and clinical 

examinations in their new follow-ups using common protocols. The cohorts have worked 

together intensively and have pooled data as part of other EC projects (Supplemental 
7
 



 

  
  

 

         

       

 

 

        

       

      

        

      

      

   

           

         

       

         

      

        

     

        

         

           

       

     

     

Material, Previous EU projects contributing data and expertise to HELIX; Larsen PS et al. 

2013; Vrijheid et al. 2012). The selection of cohorts followed a strategy to obtain data in 

different regions of Europe. 

Study populations 

In general, exposure estimates can be obtained in cohort studies for very large numbers of 

subjects by exposure models and questionnaires, whereas exposure and omics biomarkers 

can, for cost reasons, only be obtained in smaller numbers of subjects. Assessment of 

individual exposure variability and validation of exposure models in require very intensive 

data collection that is only feasible in an even smaller number of subjects. For these reasons, 

HELIX uses a multi-level study design, drawing on nested study populations for different 

levels of data collection (Figure 3): 

1) The entire six cohorts of 32,000 mother-child pairs will form the basis of existing data. 

From this study population we will use existing exposure data such as tobacco use, ESCAPE 

air pollution land-use regression (LUR) models (Eeftens et al. 2012), water disinfection by-

products (DBPs) exposure models from the HiWate project (Nieuwenhuijsen et al. 2009), 

confounder data, and outcome data. Outdoor exposure estimates (research area 2 below) will 

be applied to these entire cohorts. Risk estimates for the effects of combined outdoor 

exposures (the “outdoor exposome”) on child health will be obtained in this study population. 

The harmonisation process of the existing data will build upon protocols and expertise 

developed in earlier collaborative EC projects (Bousquet et al 2011, Eeftens et al 2012, 

Larsen et al 2013, Vrijheid et al. 2012 - Supplemental Material, Previous EU projects 

contributing data and expertise to HELIX). Outcomes that can be harmonised across cohorts 

include birth outcomes; postnatal growth and body mass index (BMI); self reported 

wheezing, doctor diagnosed asthma and measures of lung function; and neurodevelopment 
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harmonized as five neurodevelopmental constructs (general cognition, language 

development, motor abilities, socio-emotional behaviour and attention deficit hyperactivity 

disorder symptomatology) across different age groupings. 

2) A HELIX subcohort of 1,200 mother-child pairs (Figure 3) will be fully characterized for 

the external and internal exposome, including exposure biomarkers during pregnancy and 

childhood, and omics biomarkers during childhood. The impact of the total early-life 

exposome on child health will be characterized in these 1,200 mother-child pairs. The 1,200 

mother-child pairs will be nested within the entire cohorts by selecting 200 pairs from each 

cohort. Eligibility criteria include: a) age between 6 and 9 years, 7-8 if possible; the age range 

should be as narrow as possible for comparability of omics analyses and exposure-related 

behaviour; b) stored pregnancy blood and urine samples available and available sample 

volume sufficient for the analysis of exposure biomarkers detailed in research area 1; c) 

complete address history available from first to last follow-up point; d) no serious health 

problems that, in the opinion of a local clinician, may affect the performance of the clinical 

testing (e.g spirometry) or impact the volunteer's safety (e.g. renal failure, pneumonia). In 

addition, the selection will consider whether data on important covariates (genetic data, diet, 

socio-economic factors) is available. Cohorts with more than the required number of mother-

child pairs that meet these criteria will invite subjects at random from the eligible pool. The 

new follow-up examination will include the collection of new biological samples suitable for 

all planned biomarker and omics analyses (research areas 1 and 4 below). The collection of 

two urine samples (one before bed-time and one first morning void) will better capture short-

lived biomarker metabolites and provide more stable metabolome coverage than would be 

achieved with one spot urine sample. Collected blood samples will be processed into 

appropriate matrices (including whole blood, serum and plasma) and storage mediums (for 

RNA and DNA extraction), and will be rapidly deep frozen under optimized and standardised 
9
 



 

  
  

 

          

       

        

   

      

   

   

      

      

       

       

      

        

        

    

        

 

           

      

     

           

       

          

          

         

processing procedures. Variables that can impact omics profiles, such as use of drugs, time of 

last meal, physical exercise, will be collected. Trained nurses will carry out health 

examinations of the children. Examinations include measurements of weight, height, waist 

circumference, skin folds, blood pressure and spirometry, and will follow standard operating 

procedures. Standardized computer-assisted interviews with the mothers will collect 

information on exposure sources (smoking, cooking, heating, water consumption), physical 

activity, time activity, diet, social factors, stress, and asthma and allergy. 

Neurodevelopmental outcomes will be assessed through a battery of internationally 

standardized, non-linguistic, and culturally blind computer tests (N-BACK (Vuontela et al. 

2003), Attention Network Test (Rueda et al. 2004), Trail Making Test (Lezak 2004), Raven 

(Raven et al. 1998)). Parents will complete the Conners’ (Conners 1997) and Child 

Behaviour Checklist (CBCL – Achenbach 2000) questionnaire to assess child behavioural 

problems. Besides the standardization of procedures and questionnaires, the project will 

implement data collection QA/QC through the central training of nurses and field workers -

including training workshops with harmonization and reliability exercises (e.g. for the 

skinfold measurements) - and through visits of coordinators to the local cohorts during the 

fieldwork to monitor adherence to the standard operating procedures. 

3) Panel studies (Figure 3) will collect data on short-term temporal variability in exposure 

biomarkers and omics biomarkers, on individual behaviours (physical activity, mobility, time 

activity), and on personal and indoor exposures. A children panel study (Figure 3) will 

include children from the HELIX subcohort (N = 150, 25 from each cohort) and will thus be 

based on the same inclusion criteria. An added requirement for the panel study is that 

children must be able to wear equipment without destroying it. Invitations will be sent to all 

families included in the subcohort, but because of the intensive monitoring involved it is 

expected that only the most cooperative families will agree to participate, so randomness 
10
 



 

  
  

 

         

          

        

             

        

            

        

       

        

 

       

          

          

       

        

    

    

         

        

          

            

          

 

cannot be guaranteed; detailed information allowing to discuss if the panel study differs from 

the larger groups will be available. A pregnant women panel (Figure 3) will include 150 

pregnant women, 50 from 3 of the regions under study, and these will be volunteer women 

from outside the cohorts; mothers from the cohorts cannot be used for this purpose as their 

pregnancies were several years ago. Criteria for inclusion are: singleton pregnancy, age equal 

or above 18 years at the time of start of pregnancy, first visit to be conducted before week 20 

of the pregnancy, and living in the study area covered by the cohort. Study areas will be 

defined taking into account the availability of fine-scale air pollution models; as far as 

possible they should correspond to the study areas of the original cohorts, or at least cover 

similar areas. 

Subjects in the children and pregnant women panel study will be followed for 1 week in 2 

seasons. From these subjects we will collect daily urine samples, first morning and last night 

time void, and from the pregnant women an additional midday void if possible. At the end of 

each monitoring week, blood samples will be collected following the same procedures as for 

the subcohort. Subjects or their mothers will complete diaries to collect information on meal 

times, cosmetics and medication use and urination frequency for input into the 

physiologically based pharmacokinetic (PBPK) models described under research area 1 

below. The subjects will carry smartphones and personal monitors, and indoor air and noise 

monitors will be installed in the homes (research area 2 below). Additional QA/QC 

procedures in the panel studies focus on ensuring that the two monitoring periods follow the 

same procedures in all cohorts and that blood is collected at approximately the same time of 

the day and under the same conditions in both periods and in all cohorts. The latter is 

important to reduce variability in the omics analyses. 
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4) Health impacts for the larger European population will then be estimated using the 

exposure levels and dose-response relations from HELIX (Figure 3), together with dose-

response and threshold estimates from the literature and prevalence data from European 

registries and birth cohorts (Vrijheid et al. 2012). 

Measuring  the External  Exposome  

Accurate  assessment  of  environmental  exposures  (reduction of  exposure  misclassification) 

remains  an important  outstanding challenge  for health risk and impact  assessment. In 

developing the  exposome  concept  this  challenge  is  multiplied, because  it  requires  obtaining 

exposure  data  for many different  exposures. Within the  external  exposome, a  distinction can 

be  made  between largely individually  assessed exposures  such as  environmental  tobacco 

smoke  (ETS), water contaminants, persistent  organic  pollutants  (POPs), pesticides  and 

metals, which are  traditionally assessed through questionnaires  and/or biomonitoring on an 

individual basis, and exposures in the outdoor environment  such as outdoor air pollutants  and 

noise, where, so far, the residence is taken for estimation of exposure, ignoring mobility.     

Research Area 1 – Individual Ex  posures  

Individually assessed exposures  can vary on an hourly or daily to yearly basis. Temporal  

variability is  particularly high for exposures  with a  short  biological  half-life  and little  

constancy in the  underlying exposure  behaviour (e.g. bisphenol  A  (BPA), phthalates, 

organophosporous  pesticides  –  Bradman et  al. 2013;  Braun et  al. 2011;  Philippat  et  al  2013;  

Preau et  al. 2010). For such exposures, intra- compared to inter-individual  variability is 

known to be  high and only many repeat  measurements  over time  may give  improved 

exposure  estimates. For more  persistent  exposures, biomarkers  give  more  long-term  exposure  

estimates  that  are  influenced by changes  in diet  or behaviour, e.g. by breastfeeding patterns. 

Research area  1 will  measure  exposure  biomarkers  in the  subcohort  (N=1,200) in appropriate  
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biological samples newly collected from the children and previously collected from mothers 

during pregnancy. Biomarkers include POPS - PCBs, dichlorodiphenyldichloroethylene 

(DDE), hexachlorobenzene (HCB), polybrominated diphenyl ethers (PBDEs), perfluoroalkyl 

substances (PFAS) - in blood samples, non-persistent chemicals - phthalates, phenols, 

organophosphate pesticides - in urine samples, metals in blood, and cotinine as a biomarker 

of ETS exposure (Table 1). Pre- and postnatal questionnaires will collect information on 

water consumption habits, which will be combined with information on concentrations of 

DBPs in drinking water from water companies to obtain estimates of exposure to DBPs. 

Questionnaires will also collect information on sources of indoor air pollution including ETS, 

cooking and heating appliances, and ventilation (Table 1). In the panel studies, indoor air 

pollution will be measured to characterise errors when using exposure information from 

questionnaires and models. This will be done using passive samplers for nitrogen dioxide 

(NO2) and BTEX (benzene, toluene, ethylene, and xylene), and active PM2.5 Cyclone pumps, 

installed in the home. The panel studies will measure daily repeat biomarkers of the non-

persistent chemicals (phthalates, phenols, organophosphate pesticides) in urine (Table 1); 

these data will be used to characterise inter and intra-individual variability in these urine 

biomarkers, and where possible, correct for the uncertainties in the larger cohort. 

One further source of uncertainty in exposure estimates based on biomarker concentrations, is 

their relationship to the internal biologically effective dose (Sobus et al. 2011). The measured 

biomarker concentration cannot always be considered as a steady state concentration (in 

particular for non-persistent chemicals), nor as a surrogate for the internal dose of the target 

tissue and has often not been sampled during the entire critical time window (Bartell et al. 

2004; Clewell et al. 2008). Here, modelling the toxicokinetics of the chemical using PBPK 

may help the interpretation of the measured biomarker data. PBPK models describe the fate 

of chemicals in the body using individual-specific information about the physiology (age, 
13
 



 

  
  

 

gender, weight) and the  biochemistry (enzyme  content) of  the  individual  as  well  as  

information on the  individual’s  behaviour (breastfeeding, physical  activity, diet) (Beaudouin 

et  al. 2010). In the  context  of  population (epidemiological) studies, PBPK  models  can be  used 

to simulate  exposure  during critical  time  periods  in between biomarker measurement  points  

(e.g. Gascon et  al. 2013b;  Lyons  et  al. 2008;  Ulaszewska  et  al. 2012;  Verner et  al. 2010).  To 

be  relevant, this  approach requires  detailed input  data  on individual  characteristics  and 

behaviours  to minimize  assumptions  and uncertainties. HELIX  will  evaluate  the  use  of  PBPK  

modelling to interpret  biomarkers  of  exposure  to perfluorinated alkyl  substances   

(perfluorooctane  sulfonate  (PFOS),  perfluorooctanoic  acid (PFOA),  and di-2-ethyl  hexyl  

phthalate  (DEHP). For the  PFAS, we  propose  to relate  the  biomarker measurement  in the  

child to that  in the  mother during  pregnancy using an exposure  scenario  that  integrates  

maternal-foetal  transfers  during pregnancy,  transfers  via  breast  milk, and diet  during 

childhood. For DEHP, repeat  biomarkers  in the  panel  studies  and information on exposure-

related behaviours  and urination times  will  be  used to evaluate  the  predictable  value  of  

different numbers of biomarker measurements.   

Research Area 2 – Outdoor Ex    posures  

For exposures  that  are  traditionally assessed on the  basis  of  residential  location, such as  

outdoor air pollutants, noise  and the  built  environment, major improvements  in exposure  

assessment  and reduction in measurement  error can be  achieved by collecting  information on 

time-space  activity, and, in case  of  air pollution, on how  much air a  person inhales. 

Knowledge on  physical activity,  which constitutes  a proxy  of  the inhalation  rate (Kawahara   et 

al  2011)  for example, may be  integrated with personal  air pollution measurements  to estimate  

inhalation dose. New geographic  information system  (GIS)  based exposure  assessments  

(Beelen et  al. 2013;  Eeftens  et  al. 2012), remote  sensing (Dadvand et  al. 2012)  and 
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smartphone technologies (de Nazelle et al. 2013) have made it easier to assess outdoor 

exposures, and to integrate personal mobility and physical activity data. 

Research area 2 will construct a GIS environment for the six cohorts, and will assign 

exposure estimates for air pollutants, noise, UV radiation, temperature, built 

environment/green spaces. The estimates will build on existing land-use regression air 

pollution maps (Beelen et al. 2013; Eeftens et al. 2012), noise maps, UV index and 

METEOSAT data, green space estimates, and walkability, building density, bike lane map 

information for the built environment (Table 2). Data from existing regulatory monitors and 

remote sensing data from, for example, the Tropospheric Emission Monitoring Internet 

Service (http://www.temis.nl/) will be used to inform ambient spatial exposure models. The 

aim is to obtain average exposure estimates for the pregnancy period, and during childhood 

for different time periods, including one day, one week, one month, and one year before the 

outcome and omics assessment. Smart phones will be worn by the participants in the panel 

studies to provide geolocation data every second and the metabolic equivalent of tasks 

(METs) every 10 seconds, derived from the in-built accelerometer and GPS and integrated on 

the specially developed ExpoApp. We will then translate these data into activity type (resting, 

cycling, car travel) and derive inhalation rates. The panel study subjects will also wear 

electronic wrist band UV dosimeters (Seckmeyer et al. 2011), PM2.5 active samplers 

(DCG4004 sampling pump with GK”.05SH Cyclone inlet, BGI Instruments, USA), and 

MicroAthelometers (AE-51, Envirodata, Spain) for continuous black carbon monitoring 

(Table 2). Personal exposure estimates will be used to characterize uncertainties in the spatial 

exposure models. 
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Integrating the External and Internal  Exposome  

Research Area 3 – Integrating Ex posures  

Once  individual  and outdoor exposures  have  been estimated, research area  3 will  use  

analysis-of-variance  techniques, incorporating data  from  both the  HELIX  subcohort  and the  

panel  studies, to understand the  variance  components  for each key exposure  (for instance  

arising from  diet, physical  activity, or time  of  sampling) and describe  the  uncertainties  in 

each of  the  exposure  estimates. Statistical  techniques  such as  factor analysis  and latent  class  

analysis  will  be  used to create  a  reduced set  of  continuous  exposure  indices  based on 

commonly occurring exposures, while  individuals  that  share  similar exposure  profiles  or 

“exposomes”  will  be  defined. We  will  then determine  the  influence  of  variables  such as  diet, 

socio-economic  status, study region and seasonality on these  exposure  indices  or profiles.  

Specific attention will be given to the detection of cohort-specific exposure patterns.    

Research Area 4 - Integrating Molecular Exposure Signatures   

High-throughput  molecular biology “omics”  techniques  (such as  metabolomics, proteomics, 

transcriptomics, epigenomics) have  important  potential  for broad and untargeted  

characterisation of  the  internal  exposome  (Ellis  et  al. 2012;  Hebels  et  al. 2013). Here, the  

interest  is  in the  identification of  exposure  biomarkers  and mechanistic  pathways. Research 

area  4 will  determine  molecular signatures  associated with environmental  exposures  through 

the  measurement  of  endogenous  and xenobiotic  metabolite  profiles  in blood and urine, 

proteins  in plasma, and coding and small non-coding RNAs  (including miRNAs)  and DNA  

methylation  in whole  blood. Omics  tools  will  be  employed mainly in the  subcohort  of  1,200 

children with newly collected biosamples  at  age  6-9 years; the  use  of  new  samples  ensures  

comparability between techniques  and cohorts  (Figure  4, Table  3, and Supplemental  Material, 

Detailed description of  omics  techniques  to be  used in HELIX). The  use  of  a  similar time  
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point for all omics techniques also allows integration of the different techniques during data 

analysis. Genotyping is available already in most of the cohorts and will be completed where 

needed. Two main limitations in epidemiological studies aiming to use omics biomarkers, are 

tissue and intra-individual variability. Omics profiles are tissue specific and the tissue of 

interest can usually not be obtained (e.g. adipose tissue, brain tissue). The focus of HELIX is 

thus on markers in systemic biological samples (blood, urine) to evaluate the use of omics 

biomarkers as markers of exposure changes in (larger) epidemiological studies. Omics 

profiles change over time in the same person; a cross-omics paper with three repeat analyses 

in 16 subjects over a one month period showed that intra-individual variability for 

metabolomics and transcriptomics was found to be lower than inter-individual variability for 

almost all the biomarkers (Gruden et al. 2012). However, some sets of markers were highly 

variable within the same subject and can thus not directly be used in epidemiological studies. 

Further, longer time periods of one month are likely to give higher intra-individual 

variability. HELIX will make some progress towards characterising intra and inter-individual 

variability in the metabolomics and transcriptomics markers by analysing repeat biological 

samples collected in the panel studies in different seasons. 

The omics work will be implemented in three general stages:   

Stage  1)  Study design optimization:  Biological  samples  collected in the  panel  studies  (daily 

urine  samples, 2 blood samples) will  be  used to assess  detectability of  omics  markers  and the  

likely sources  of  variability within and between individuals, using small  numbers  of  subjects. 

These results will inform the design and interpretation of stages 2 and 3.      

Stage  2)  Omics-exposure  associations  in the  biological  samples  newly collected in the  

subcohort  (N  =  1,200): Primary analyses will evaluate  three  a-priori  defined exposures  (ETS, 

total  POP concentration, and air pollution) and on the  specific  multiple  exposure  clusters  
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generated in research area 3. The three exposures have been selected because we have 

comparatively good long-term exposure estimates and there is already some data also from 

human omics studies (Bollati and Baccarelli 2010; Hou et al. 2011; Hou et al. 2012; Rusiecki 

et al. 2008). Power calculations for these analyses are detailed in the Supplemental Material 

(Detailed description of omics techniques to be used in HELIX). Secondary analyses will 

examine other exposures. Panel study data will evaluate short-term exposure-omics 

associations for a range of exposures for which detailed data is collected in the panels: air 

pollution, noise, UV, and non-persistent chemicals.  

Stage 3) Biologically meaningful omics “hits” will be then linked to our main child health 

endpoints, similar to the “meet-in-the middle” approach to biomarker discovery (Chadeau-

Hyam et al. 2011). The child health outcomes will be largely continuous outcome scores 

(BMI z-score, cognitive score, lung function). If relevant, reverse causality potential may be 

evaluated in blood and urine samples available in some of the cohorts at earlier time points 

(Figure 4). 

In order to analyse, integrate, and interpret the large amounts of data generated by individual 

omics techniques, HELIX will apply a pathway analysis approach. The biomarkers obtained 

from the association analysis, in combination with available libraries of biological pathways 

(GO - http://www.geneontology.org/, KEGG - http://www.genome.jp/kegg/, Reactome -

http://www.reactome.org/, Comparative Toxicogenomics Database - http://ctdbase.org/), will 

be used to identify biological pathways affected by the exposures. Identification and 

representation of biological-toxicological pathways will be done using software such as 

Ingenuity Pathway Analysis - http://www.ingenuity.com/, Cytoscape (Saito et al 2012, and 

Impala (Kamburov et al. 2011). Pathway approaches combining data from different omics 

techniques (e.g. metabolomics and transcriptomics) are also starting to be developed to search 
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for common pathways determining sensitivity to pharmaceutical and toxic agents (Cavill et 

al. 2011; Jennen et al. 2011; Kamburov et al. 2011); HELIX aims to use similar approaches. 

Associating  the Exposome with Child Health  

Finally, one of the greatest challenges of the exposome concept lies in the assessment of its 

association with health outcomes: how can we integrate multi-dimensional exposome data to 

draw meaningful conclusions about (child) health impacts? In general, environmental health 

studies have considered single exposures or single families of exposure (e.g., atmospheric 

pollutants, drinking water pollutants). Notable exceptions of studies that have provided risk 

estimates for multiple exposures include a cross-sectional exposure-wide association study 

(EWAS) of diabetes (Patel et al. 2010; Patel et al. 2013), or a study by Budtz-Jorgensen 

(Budtz-Jorgensen et al. 2010) jointly considering PCBs and mercury. Statistical analyses that 

consider many exposure variables simultaneously in a naïve (agnostic) way, such as the 

EWAS, strongly increase the risk of observing random associations (false positives) because 

of multiple testing, and of underestimating the global effect of the environment. In 

developing statistical tools for the analysis of many exposure factors, important lessons 

should be drawn from the achievements but also the limitations (Shi and Weinberg 2011) of 

the parallel genome-wide association studies (GWAS) field, particularly regarding the 

probably weak efficiency of purely agnostic approaches, the very large sample sizes required, 

and the need to use complementary approaches (e.g. pathway analysis) making use of a priori 

information. 

Further, the exposome includes evaluation of multiple exposures, omics markers and 

outcomes, each with very different temporal scenarios. A challenge in the development of the 

statistical analysis protocols is to takes these complexities into account. For example, spatial 

models for the outdoor exposures are constructed for a specific year and can then be 
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extrapolated to relevant time periods (days, weeks, months or years) backward or forward in 

time using available monitoring stations data. For persistent pollutants we may assume that 

biomarkers give estimates over a relatively long time period whereas for non-persistent 

pollutants biomarkers will reflect only very recent exposures; in some cases we may assume a 

fairly constant exposure pattern depending on the habits underlying the exposure (e.g. 

cosmetics use, dietary patterns), whereas in other cases exposure variations may be largely 

seasonal (e.g. sunscreens, pesticides). Neurodevelopment, growth and obesity, and asthma 

and allergies, are each driven by extremely complex multi-stage developmental processes that 

take place prenatally and during the first years of postnatal life. Commonly used statistical 

techniques for high dimensional data, such as machine learning, dimension reduction and 

variable selection techniques, need to be adapted to the longitudinal context by 

accommodating issues such as time-varying exposure effects, delayed effects, and effects of 

exposure trajectories over time on outcome trajectories (Buck Louis 2012). 

Research Area 5 – Linking the Ex posome to Child Health  

Research area  5 aims  to  develop  a multi-step approach that  is  based on several  tools  and 

methods and will produce risk estimates for different types of exposure variables:   

1) Many single exposure variables: an agnostic EWAS approach with no a priori information, 

in which all  pairs  of  exposure-outcome  associations  will  be  quantified (using classical  

regression models), appropriately controlling for false  discovery rate  (FDR), as  is  done  in 

GWAS and in the  only published EWAS  (Patel  et  al. 2010;  Patel  et  al. 2013);  spline  and 

other smoothing models  (Slama  and Werwatz  2005)  will  then look for possible  thresholds  

in dose-response relationships.  

2) Combined exposure  variables:  a structural  equation modelling  (SEM)  approach (Budtz-

Jorgensen et  al. 2010)  in which synthetic  exposure  variables  will  be  built  based on 
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previous knowledge summarised by directed acyclic graphs. Several sets of synthetic 

exposure variables will be considered, including based on common exposure pathways 

(e.g. indoor and outdoor air pollutants), on exposure patterns generated by the project and 

on knowledge of biological pathways. 

3) Groups of subjects sharing a similar exposome: a Bayesian Profile Regression, which aims 

to identify groups of individuals sharing a similar exposome that at the same time show 

marked differences according to the health outcome variable of study (Molitor et al. 2010; 

Papathomas et al. 2011). This is achieved by fitting model-based clustering to the 

exposure data, while allowing the outcome of interest to influence cluster membership. 

This technique was used, for example, to identify as a high risk set for lung cancer a 

cluster of subjects characterised by their living close to a main road, high exposure to 

PM10 and NO2, and carrying out manual work (Papathomas et al 2011). This technique 

considers the exposome as a whole instead of breaking up risks for individual exposures 

and is therefore able to capture effects and complex interactions and combinations of 

exposures that cannot be detected with the EWAS approach. 

SEMs and Bayesian profile regression models will also be used to account for the effects of 

exposure measurement error and uncertainty, in addition to more classical measurement error 

models such as regression calibration. The general idea is that these techniques treat 

exposures not as a fixed value but as a distribution, that can be informed from the repeated 

measurements (e.g. of non-persistent pollutants) and personal measurements (e.g. of air 

pollutants) in the panel studies. As a preliminary step, a simulation study aimed at comparing 

the efficiency of various study designs and statistical approaches to characterize the impact of 

the exposome on health will be conducted. With a sample size of 1,200 (subcohort), the 

agnostic EWAS analysis with control for FDR will have a power of 80% to detect a 3 point 

difference in a continuous outcome variable with a standard deviation of 15 (as in common 
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neurodevelopment  indexes), considering that  15% of  the  tested exposures  will  show  an 

association (Liu and Hwang 2007). Higher power will be achieved   for exposures  available for  

more subjects (e.g. air pollution) and more hypothesis-driven analyses.  

Heterogeneity between cohorts  in terms  of  study design can play a  role  in the  results  of  these  

analyses, but  it  will  not  be  possible  to separate  these  effects  from  true  differences  between 

populations. We  will  address  the  issue  of  cohort  differences  in two ways:  1) by centering all 

exposures  using the  cohort  mean. Analyses  conducted with mean-centered variables  will  

remove  differences  between cohorts  and only consider within-cohort  differences  in exposure. 

2) by documenting heterogeneity between cohorts, applying random  effects  models  where  

applicable, and conducting sensitivity analyses excluding one cohort at the time.  

Research Area 6 -  Health Impact of Multiple Exposures  

Finally, research area  6  will estimate  the  burden of  common childhood diseases  that  may be  

attributed to multiple  environmental  exposures  in Europe. It  will  construct  scenarios  for the  

health impact  assessment, working from  traditional  one-exposure-one-outcome  assessments  

(e.g. traffic-related  air pollution and asthma, mercury and neurodevelopment) to more  

complex benefit-harm  scenarios. For example:  given increasing obesity rates, children are  

encouraged to walk or cycle  to school  which may lead to increased energy expenditure  and 

possible  reduction in weight  and improvement  in mental  health. However, at  the  same  time, 

longer duration of  exposure  to air pollutants, noise  and UV, may lead to adverse  health 

effects  and higher risks  of  accidents  (Rojas-Rueda  et  al. 2012). Do the  overall  benefits  

outweigh these  risks  and what  should policy makers  do to improve  these  conditions  of  active  

transportation?  This  work will integrate  exposure, uncertainty, and biomarker data  obtained 

in HELIX, risk estimates  obtained in HELIX, exposure-response  data  from  the  literature, 

exposure  data  from  other existing  birth and child cohorts  (Vrijheid et  al. 2012)  and Europe-
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wide  surveys, and prevalence  data  from  existing health registries/surveys  in Europe. Expert  

workshops will be organised to obtain information.  

Data Warehouse  

Data  from  the  previous  cohort  follow-ups, the  new  follow-up at  6-9 years, the  panel  studies, 

and the  omics  and biomarker analyses, will be  stored in a  common, central  database  (data  

warehouse)  with common, centrally established, QA/QC procedures. Mechanisms  to transfer 

and hold data  from  across  cohorts  and other partners  will  include  the  identification of  agreed 

data  sets, specifications  for the  data  warehouse, data  validation, cleaning  and harmonization 

procedures, and the  establishment  of  robust  data  security mechanisms.  Data  analyses  

protocols  will  be  established and performed centrally by a statistical  analysis  task force.  

Further, the  data  warehouse  will  be  established in a  format  that  will  allow  future  uses  beyond 

the  project  as  an accessible  resource  for researchers  external  to the  project. Procedures  for 

external  access  will  be  developed and made  public  by the  end of  the  project;  this  will  include  

information regarding data collection, data content and procedures for data requests.  

Conclusions  

There is a strong consensus that new integrative tools and approaches for human exposure 

and risk characterization are needed to significantly advance environmental risk and health 

impact assessment and health protection (Cohen Hubal et al. 2010; Lioy and Rappaport 2011; 

NRC 2012). Specifically, new approaches are needed to measure and integrate a wide range 

of (known and unknown) chemical and physical exposures from different sources and link 

these to health. The exposome concept may be a useful paradigm for this. HELIX is one of 

the first attempts to describe the early-life Exposome of European populations and unravel its 

relation to omics markers and health in childhood. As proof of concept, it will be able to 

evaluate the many challenges in the implementation of the exposome concept and it will form 
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an important first step towards the description of the life-course exposome and its health 

effects 
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Table 1. Individual exposures. 

Exposure group Entire cohorts (N=32,000) HELIX subcohort (N=1200) Children panel study (1 week in 
2 seasons) (N=150) 

Pregnancy panel study (1 week in 
2 seasons) (N=150) 

PCB-153, DDE, 
HCB, PBDE-47 

- Biomarkers: in stored pregnancy blood samplesa 

and in newly collected child blood samples. 
- -

PFAS (PFOS, 
PFOA, PFBS, 
PFHxS, PFNA) 

- Biomarkers: in stored pregnancy blood samplesa 

and in newly collected child blood samples. 
PBPK models for pregnancy and childhood. 

-

Metals (Hg, Pb, 
and TMS) 

- Biomarkers: in stored pregnancy samplesa and in 
newly collected child samples: blood (Pb), urine 
(TMS), and hair (Hg). 

- -

Phthalates (13 
metabolites) 

- Biomarkers: in stored pregnancy urine samplesb 

and in newly collected child urine samples (last 
night and first morning void). 

Biomarkers: in daily repeat urine 
samples. Daily data on diet, 
cosmetics. PBPK model for DEHP. 

Biomarkers: in daily repeat urine 
samples. Daily data on diet, 
cosmetics. PBPK model for DEHP. 

Phenols (BPA, 
parabens, TCS, 
BP3) 

Biomarkers: in stored pregnancy urine samplesb 

and in newly collected child urine samples (last 
night and first morning void). 

Biomarkers: in daily repeat urine 
samples. Daily data on diet, 
cosmetics. 

Biomarkers: in daily repeat urine 
samples over whole week. Daily data 
on diet, cosmetics. 

OP pesticides - Biomarkers: in stored pregnancy urine samplesb 

and in newly collected child urine samples (last 
night and first morning void). 

Biomarkers: in daily repeat urine 
samples in two seasons. Daily data 
on diet and repellent use. 

Biomarkers: in daily repeat urine 
samples in two seasons. Daily data on 
diet and repellent use. 

Water DBPs Estimates available from 
previous HiWATE project 
during and after pregnancy. 

New questionnaire in children on water 
consumption and swimming combined with 
water company data. 

Water consumption diaries. Water consumption diaries. 

Indoor air: 
BTEX, NO2, 

PM2.5 

Existing questionnaire data 
on indoor sources during 
and after pregnancy. 

New questionnaire in children on cooking, 
heating, cleaning, and ventilation. 

Passive BTEX and NO2 sampling in 
the home. Active PM2.5 sampling. 
Questionnaire on cooking, heating, 
cleaning, and ventilation. 

Passive BTEX and NO2 sampling in 
the home. Active PM2.5 sampling. 
Questionnaire on cooking, heating, 
cleaning, and ventilation. 

ETS Existing questionnaire and 
cotinine data during and 
after pregnancy 

New questionnaire in children. Biomarkers: 
cotinine measurement in newly collected child 
urine and/or hair samples. 

Questionnaire on ETS. Questionnaire on ETS. 

aWhere measurements are available from previous studies these will be used. bPooling of 2 or more urine samples when available.
 

BP3: benzophenone-3; BPA: bisphenol A; BETX: Benzene, Toluene, Ethylbenzene, Xylene; DBPs: disinfection by-products; DDE: dichlorodiphenyldichloroethylene; DEHP: bis(2-

ethylhexyl) phthalate (di-2-ethylhexyl phthalate; ETS: environmental tobacco smoke; HCB: hexachlorobenzene; Hg: mercury; NO2: nitrogen dioxide; OP: organophospate pesticides;
 

Pb: lead; PBDE-47: polybrominated diphenyl ethers-47; PCB-153:polychlorinated biphenyl-153; PFAS: perfluoroalkyl substances; PFBS: perfluorobutanesulfonic acid; PFHxS: 


perfluorohexane sulfonic acid; PFNA: perfluorononanoic acid; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonic acid; TCS: triclosan; TMS: total metal spectrum.
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Table 2. Outdoor exposures. 

Exposure 
group 

Entire cohort (N=32,000) – for pre 
and postnatal exposure periods 

Subcohort (N=1,200) Children panel study (1 week in 
2 seasons) (N=150) 

Pregnancy panel Study (1 week in 
2 seasons) (N=150) 

Ambient air 
pollutants 

LUR model for NO2, PM2.5. PM10, 
PMcoarse PM2.5 aborbance, PM 
elemental analyses. Routine 
monitoring and OMI satellite data for 
temporal variability 

LUR model for NO2, PM2.5. PM10, 
PMcoarse PM2.5 aborbance, PM 
elemental analyses. Routine 
monitoring and OMI satellite data for 
temporal variability 

Inhalation rates and mobility (GPS) 
data from smartphones. Personal 
monitoring (24 hours) of PM2.5 (and 
black carbon. 

Inhalation rates and mobility (GPS) 
data from smartphones. Personal 
monitoring (24 hours) of PM2.5 and 
black carbon. 

Noise Existing municipal noise maps to 
obtain spatial estimates. Address-based 
modelling of noise at the most and 
least exposed facade 

New questionnaires in children on 
bedroom position, noise perception, 
etc. Noise estimates based on maps 
and questions. 

Time-activity and mobility (GPS) data 
from smartphones. 

Time-activity and mobility (GPS) data 
from smartphones. 

UV Remote sensing (satellite) UV 
radiation maps. 

New questionnaires in children on 
traveling, use of sunscreens, clothes, 
skin color. UV radiation estimates 
based on maps and questions. 

Time-activity and mobility (GPS) data 
from smartphones and questionnaires. 
Personal monitoring using electronic 
UV dosimeters. 

Time-activity and mobility (GPS) data 
from smartphones and questionnaires. 
Personal monitoring using electronic 
UV dosimeters. 

Temperature Remote sensing (satellite) temperature 
maps (from thermal infrared band) and 
data from local meteorological stations 

New questionnaires in children on 
heating and air conditioning. 
Temperature estimates based on maps 
and questions. 

Time-activity and mobility (GPS) data 
from smartphones and questionnaires. 
Personal monitoring of temperature 
using electronic dosimeters. 

Time-activity and mobility (GPS) data 
from smartphones and questionnaires. 
Personal monitoring of temperature 
using electronic dosimeters. 

Built 
environment / 
green spaces 

Normalized Difference Vegetation 
Index from satellite. Building density, 
walkability score, accessibility, bike 
lanes, etc, derived from GIS data. 

New questionnaires in children on use 
of green spaces, public spaces, active 
transportation. 

Time-activity and mobility (GPS) data 
from smartphones and questionnaires. 

Time-activity and mobility (GPS) data 
from smartphones and questionnaires. 

LUR: Land use regression, NO2: Nitrogen dioxide, NOX: Nitrous oxides, PM2.5: mass concentration of particles less than 2.5 µm in size, PM10: mass concentration of particles less 

than 10 µm in size, PM2.5 absorbance: measurement of the blackness of PM2.5filters; a proxy for elemental carbon, which is the dominant light absorbing substance, PMcoarse: mass 

concentration of particles between 2.5 and 10 µm in size, GPS: Global Positioning System. 
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Table 3. Omics analyses.a 

Omics technique Entire cohort 
(N=32,000) 

Subcohort (N=1,200 mother-child pairs) Children panel study (1 week in 2 seasons) (N=150)b 

Metabolomics - Untargeted 1H NMR and semi-targeted UPLC-MS 
analysis in urine; targeted analysis in serum (using 
Biocrates Absolute IDQ p180 Kit) in newly collected 
child samples. 

Further analysis of daily urine samples and  single 
serum sample at the end of each week (in winter and 
summer season) to evaluate sources of variation and 
short-term exposure-omics associations. 

Proteomics - Targeted analysis in newly collected child plasma 
samples depending on results on analysis in children 
panel study. 

Initial iTRAQ and MRM (or similar) analyses in 
plasma samples collected at end of each week (in 
winter and summer season) to evaluate sources of 
variation and short-term exposure-omics associations. 

Transcriptomics - Next generation sequencing (Ilumina Hiseq2000) or 
microarray analysis of both mRNAs and miRNAs in 
newly collected child whole blood samples. In 
addition, plasma will be collected to analyse miRNAs 
in the future. 

Analysis of blood samples at end each week (in winter 
and summer season) to evaluate sources of variation 
and short-term exposure-omics associations. In 
addition, plasma will be collected to analyse miRNAs 
in the future. 

DNA methylation - Infinium Human Methylation 450 BeadChip for 
genome-wide methylation analysis of DNA extracted 
from newly collected child whole blood samples. 

Analysis of blood samples at end each week (in winter 
and summer season) to evaluate sources of variation 
and short-term exposure-omics associations. 

aDetails of the techniques are described in Supplemental Material, Detailed description of omics techniques to be used in HELIX. bThe pregnancy panel 

study will collect similar biological samples to the children panel study. Omics analyses are currently not foreseen in the pregnant women, but samples 

will be stored for future analysis, e.g. to evaluate if specific omics findings from the children studies are replicated in the pregnant women. 

NMR: nuclear magnetic resonance; iTRAQ = Isobaric tags for relative and absolute quantitation; MRM: mass spectrometry-based multiple reaction 

monitoring, mRNA: messengerRNA, miRNA: microRNA, UPLC-MS:  ultra performance liquid chromatography–mass spectrometry. 



 

 

  
  

 

 

   

 

  

  

  

Figure Legends  

Figure 1. HELIX Conceptual Framework and interactions between research areas.
 

Figure 2. Participating birth cohorts.
 

Figure 3. Study design, study populations, data sources.
 

Figure 4. Time line of the omics analysis.
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